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A Theory of Gradient Hydroxyapatite
Chromatography: A Specification of the
Intermediate Abstract Flux

TSUTOMU KAWASAKI

JAPAN BIOMEDICAL MATERIAL RESEARCH CENTER
2-11-21 NAKANE, MEGURO-KU, 152 TOKYO, JAPAN

Abstract

On the partial basis fo the theory for the intermediate abstract flux, the chromato-
gram for gradient hydroxyapatite chromatography can be calculated for a mixture of
molecules with the same dimensions and the same shape, taking into account both
repulsive molecular interactions occurring on the hydroxyapatite serfaces and longi-
tudinal diffusion in the column. In the present paper the general relationship between
the intermediate abstract flux and the ideal chromatogram occurring in the absence of
longitudinal diffusion is specified. The earlier theories for the intermediate abstract
flux are reconsidered from the new point of view.

INTRODUCTION

The adsorption and desorption phenomena in a hydroxyapatite (HA)
column can be represented by using a model where adsorption sites are
arranged in some manner on the surfaces of HA. Sample molecules with
adsorption groups and particular ions from the buffer compete for these
crystal sites (/). Gradient chromatography is carried out by applying a linear
molarity gradient of competing ions. This migrates from the top to the bottom
of the column at the same time with the migration of bands of the sample
molecules. Since the migration rate of sample molecules is smaller than, or at
most equal to, the migration rate of the molarity gradient, it is apparent that
the molecules migrate upward along the molarity gradient,

Earlier (1-6) a theory of linear gradient chromatography was developed
for the simplest case of small sample loads when mutual interactions among
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sample molecules are negligible and when a narrow band of the molecules is
formed initially at the top of the column. It can be assumed that longitudinal
diffusion of both sample molecules and competing ions occurs in the column
essentially due to heterogeneity in the flow rate. This is provoked by
heterogeneity in interspaces among HA crystals packed in the column (7).
The chromatographic process is virtually a quasi-static process. Thermo-
dynamic equilibria are locally attained in the column within any small time
interval (for details, see Ref. /). Since competing ions are locally distributed
within a column section due to diffusion (see above), it is necessary to specify
the meaning of the molarity gradient of the ions. This can be defined as the
gradient obtained by connecting mean molarities, m, occurring within
respective column sections. The gradient is linear with linear gradient
chromatography since the diffusion effect is canceled out among different
column sections (for details, see Refs, I and 3).

In principle, it is impossible for a gradient chromatographic process to be
described on the basis of a continuity equation for the actual flux of sample
molecules occurring in the column (3). It is necessary to consider an abstract
flux with density, C,, of molecules existing in the interstitial liquid in the
column which migrates upward along the molarity gradient (3). However, the
density Ci, is different from the density €Y, of the actual flux which is
concerned with molecules in the interstices, including the crystal surfaces, in
the column. Therefore, the abstract flux is fundamentally different from the
apparent flux that migrates upward along the molarity gradient (see above;
for details, see Ref. 3). In the absence of the mutnal molecular interactions,
the abstract flow equation can be solved under a given initial boundary
condition, and the theoretical chromatogram can be calculated (I-6).
Because of mathematical difficulty, however, it is practically difficult to treat,
on the basis of the abstract flux, the general case when mutual molecular
interactions occur on the HA surfaces. The interactions occurring in the
interstitial liquid in the column are generally negligible since the molecular
concentration (C,) in solution is low.

The mathematical structures of both actual and abstract fluxes are
mutually derivable from the structures of one another (Ref, I, Appendix II;
Ref. 3). In the process of the derivation, an intermediate abstract flux (i.a.f.)
appears (see Eq. A13 in Ref. 1, Appendix II; or Eq. 20 in Ref. 3). This flux,
with density, X,/ of sample molecules adsorbed on the crystal surface of HA,
migrates along the gradient made by the quantity s (see Eq. 2), and it is only
concerned with molecules adsorbed on the HA surface. The i.a.f, does not
involve the diffusion term since diffusion does not occur on the HA surface,
In contrast to the actual gradient chromatographic process with molecular
diffusion that can be described only on the basis of the abstract flux (see
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above), the idealized chromatographic process occurring in the absence of
diffusion can be described on the basis of either the abstract flux or the i.a.f.
In Appendix II in Ref. I the ideal chromatogram was calculated on the basis
of the i.a.f. for the case of no molecular interactions. In Ref. 7 the calculation
was performed for the mixture of molecules with the same dimensions and
the same shape, taking into account the repulsive interactions among sample
molecules adsorbed on the HA surface.

The theory for i.a.f. is important. Thus, in Ref. 8, combining this theory
with the general theory with small sample loads (/-6), a method was
developed by which the chromatogram can approximately be calculated for a
mixture of molecules with the same dimensions and the same shape, taking
into account both repulsive molecular interactions occurring on the HA
surfaces and longitudinal diffusion in the interstices in the column. In Ref. 9
this method was applied to the experimental analysis of collagen chromato-
grams.

The calculation of the ideal chromatogram as based on i.a.f. (see above)
consists in (a) solving the continuity equation, or the simultaneous continuity
equations if there are molecular interactions, for this flux under a suitable
intitial boundary conditions, and (b) calculating the chromatogram from the
solution. However, both the type of the initial boundary condition used in
Step (a) and the method for the calculation applied in Step (b) are
fundamentally different between the case of no molecular interactions
{Appendix IT in Ref. 1) and the case of molecular interactions (7). The
purpose of the present paper is to specify the general relationship between
i.af. and the ideal chromatogram occurring in the absence of molecular
diffusion. It is confirmed that the ideal chromatogram can be calculated on
the basis of the same principle in both the absence and the presence of
repulsive molecular interactions.

THEORETICAL

(A) General Relationship between the Intermediate Abstract
Flux and the Ideal Chromatogram Occurring in the Absence of
Longitudinal Diffusion in the Column

For a mixture of molecular components (1, 2, ..., p) with the same
dimensions and the same shape, the simultaneous continuity equations for
i.a.f. occurring in the presence of mutual molecular interactions on the HA
surface can be written (Ref. I, Appendix II; Refs. 3, 7, and 8) as
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B, n(m, x)
i [ 1 —;( H(m, X) X" aX( §)
P ’ p
+ =0 '=1,2,..., 1
ds om (p py (1)
where
s =gL (2)
P
X= 2 X" (3)
p =1
B, dr(m)
H, 4
5 y ) (4)
1 (U o
ren{m) = ('m + 1Y dm
4o’y JMin
1 , ,
: , [((p1m+l)x+l __((plmil +1)x+1] (5)
@'qpy(x’ + 1) '
and
dr(p')(m)

y = (p'm + 1) (6)
m TS

The physical meanings of the symbols involved in Eqgs. (1)-(6) are:

m = molarity of competing ions, constituting a linear gradient in the

column.

m;, = initial molarity of competing ions at the beginning of the

molarity gradient introduced at the top of the column.

L = distance from the top of any longitudinal position in the column.

In some instances, L represents the total length of the column.

£ = positive constant representing the slope of the molarity gradient

of competing ions in the column. This is expressed as the
increase in ion molarity per unit length of the column, measured
from the bottom to the top. [Therefore, s (Eq. 2) has a
dimension of molarity, representing the difference in ion molar-
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ity between the top and the bottom of the column when L
represents the total column length. ]

Xy = molecular density of component p’ on the crystal surface of
HA, defined as unity provided the crystal surface is saturated
only with component g'. [Therefore, x (Eq. 3) represents the
density for all components 1, 2,..., p, being equal to unity
when the crystal surface is saturated with them.]

By\(m, x) = partition of component ' in the interstitial liquid in the column,
or the ratio of the amount of molecules of component p’ in
solution to the total amount occurring in a longitudinal position
in the column. The partition is determined when both m and x
are given (see Eq. 4).

H(x) = function of x representing the mutual molecular interactions
occurring on the crystal surface of HA. When x tends to zero,
then H tends to unity. With repulsive interactions, H increases
monotonically with an increase in x. For details, see Remark
(1) below.

g, = positive constant representing a molecular property of com-
ponent p'. For detail, see Remark (2) below.

x' = average number (in the equilibrium state) of sites of HA on
which the adsorption of competing ions is impossible due to the
presence of an adsorbed molecule. x’ therefore represents the
effective dimensions of the molecule, assumed to be the same
for any component in the mixture.

¢’ = positive constant representing the property of competing ions.

Some comment on the function r,,, (Eq. 5) is mentioned in Remark (3).
Equation (1) can be rewritten by using Eq. (4) as

O[H(X)X(o"] " 9X(o')
as ar(p')

=0 (p'=1,2,...,p) (1)

In this section the argument is made on the basis of Eq. (1) whereas Eq. (1')
will be used in Sections (C) and (D).

The i.a.f. has the fundamental property that it occurs independently of
molecules existing in the interstitial liquid in the column. This is the reason
why i.a.f. does not involve the diffusion term (see Introduction Section and
Ref. 1, Appendix II). Due to this property of i.a.f., it can, in general, be stated
that the chromatogram, fi,,,, for component p’ occurring when s is given
(i.e., when both length L of the column and slope g of the molarity gradient
are given; see Eq. 2) should be represented as a function of m as
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OX')
s m) = — — 7
.f;p ),( ) [ am ]s ( )
fulfilling a conservation condition
Siys(m) dm = xty, (8)

where X represents the total amount of component p' that has initially been
loaded on the column (cf. Ref. 7). We consider below the case when
molecules are “retained” on the column initially. i.e., before the application
of the molarity gradient of the ions. In this instance x is virtually equal to
the amount of molecules that are intially adsorbed on the crystal surfaces of
HA in the column (see below; cf. Remark 4).

In this stage of the argument, however, we have no knowledge about how
the quantity )%, should be represented. A proof is given below that the
quantity should be expressed in such a unit that the x#. value be numerically
equal to the mean initial density of component p’ on the crystal surfaces of
the total column, viz., the proportion on the crystal surfaces in the column
that are initially occupied by component p'. x¥ is equal to unity provided ail
the crystal surfaces are saturated only with component p’. This means that
the quantity x&/ has both extensive and intensive properties.

Proof. At the top (L = 0) of the column where the relationship s = 0 is
fulfilled (see Eq. 2), the inflow of molecules does not occur when once the
sample load has been finished. This means that, after the sample load, a
condition is always fulfilled that when s = 0, then

X =0 (p'=1,2,....p) (9)

On the other hand, provided the slope g of the molarity gradient has an
infinitesimal value dg, the value (written as 8s) of the parameter s (Eq. 2) at
the bottom L of the column should also be infinitesimal, and it can be
represented as

8s =L 8g (10)

ds has a physical meaning of the molarity difference of competing ions
between the top and the bottom of the column, being constant (with respect to
time) with linear gradient chromatography. In this instance the first term on
the lefi-hand side of Eq. {1) becomes
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By
J [ " X“”] 1 B
) _ { [ ) , ]
= 1 X(p"
m,s=8s

Os 8s

1 B, ]
_ X ’
Js [ 1 - B(p') @) m,s=8s

Equation (1) can therefore be rewritten as

dX')
—_——— = t=1,2,...,
dm/esy Ccer (P P)
where

C , = ___g.(fi_._ Xo’ (12)
] (0")

I — By,

On the other hand, calling L’ the total interstitial volumes in the column, a
the interstitial volume per unit length of the column, and V the elution
volume, we have

L = aL (13)
and
d )
dm_ _ % (14)
av «

and from Eqgs. (10), (13), and (14),

d<m>=d——V—- 15
0s (L’) (1)

can be derived. The left-hand side of Eq. (15) shows an increase in ion
molarity measured in unit of the difference, s, in ion molarity between the
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top and bottom of the column. This is equal to the increase in elution volume
measured in units of the total interstitial volumes involved in the column (the
right-hand side of the equation). This means that the left-hand side of Eq.
(15) or the denominator on the left-hand side of Eq. (11) can be defined
independently of the value of ds, and it can have a physical meaning even
when 85 is an infinitesimal quantity.

In Eq. (11) x, has a meaning of the average molecular density of
component p’ on the HA surfaces in the column or the total amount of
component p’ on the crystal surfaces in the column expressed in such a unit
that the amount is numerically equal to the molecular density. Moreover,
with molecules that are initially “retained” on the column, the amount of
molecules existing in the interstitial liquid in the column is negligibly small in
comparison with the amount of molecules that are present on the crystal
surfaces, and, as long as Eq. (11) is fulfilled, the same situation continues
during the whole process of chromatography (cf. Remark 4). This means that
X0 virtually represents the total amount of component p’ in the column. The
left-hand side of Eq. (11) represents the decrease in the total amount of
component p’' in the column per unit increase in ion molarity measured in
units of ds. The right-hand side of Eq. (11) representes the amount of
component p’ eluted at the same time out of the column. Therefore, denoting
by x{& the initial average molecular density of component p' on the HA
surfaces in the column, a conservation condition,

m ==

m %
CpHd ARG (16)

m=min

should be fulfilled. On the other hand, since the chromatogram f, s
represents the elution of component p' out of the column occurring per unit
increase in ion molarity, it is evident that f) s is related to C) by the
relationship

Cy)
os

pr')‘Bs = (17)

By substituting Eq. (17) into Eq. (16), Eq. (8) can be derived. This means
that xf, introduced into Eq. (16) is identical with x#: introduced into Eq.
(8).
Remark (1). In general, it is reasonable to assume that the mutually
superimposed state of molecules does not occur on the HA surface at least
when chromatography is proceeding (&), and H(x) can be represented as



13: 38 25 January 2011

Downl oaded At:

HYDROXYAPATITE CHROMATOGRAPHY 1405

S EETIV0

H —_
(x) 200 (a)

where the numerator and the demominator on the right-hand side are
concerned with energetic and geometrical interactions, respectively. Thus £
represents the interaction energy per molecule provided the maximum
possible contact with other molecules is made. ¥(x) is the function of x that
increases monotonically with an increase in x, being equal to zero and unity
when x is zero and unity, respectively. p(x) is the probability that, when a
new molecule is added at random to the HA surface, a proportion x of which
is already occupied by molecules, it is not superimposed on the already
adsorbed molecules. The final chromatogram depends only slightly upon the
shape of the function p(x), and it is a good approximation to assume that
() = 1 — x (cf. Refs. 7 and 8).
Remark (2). g, can be written as

—_ ne/kT
Gy = Bripe e (b)

where f is the positive constant related to the property of the column,
—¢ (&g > 0) is the adsorption energy of a functional group of the molecule on
one of sites of HA, x, is the average number (in the equilibrium state) of
functional groups per molecule of component p’ that react with sites of HA,
and 7, is the number of effective geometrical conformation(s) of a com-
ponent p’ on the HA surface (in the equilibrium state) (cf. Refs. 1 and 8).

Remark (3). With small sample loads X is virtually equal to zero, and Eq.
(a) reduces to

H(x) =1 (c)
The relationships
driy, — By (d)
dm 1 - B(p’)
and
" B
Yoy = ————dm
(0" j;in 1 — B, (e)

are fulfilled (cf. Egs. 4-6). In Ref. 1, r;, was defined by Eq. (e) for the case
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of small sample loads (see Eq. 11 in Ref. I). For the general case of
molecular interactions, however, 1,4 can be defined by Eq. (5).

Remark (4). Practically only the case when molecules are initially
“retained” on the column is important since, unless this is the situation, it is
unnecessary to apply the molarity gradient. For “retained” molecules the
B, value is small when m = m,,, and almost all molecules in the column are
adsorbed on the HA surfaces since this is the reason why the molecules are
“retained.”” However, under the experimental condition where s is small,
molecules are generally eluted out of the column in molarities that are close
to my,. Therefore, during the elution process the B, value is kept close to
zero. In order for almost all molecules to be eluted out of the column, an
extremely large volume of the solvent in comparison with the total interstitial
volumes of the column is necessary. This means that, from a practical point
of view, the molecular elution does not occur under the experimental
condition where s is small and where the column has a finite length.

(B) Initial Boundary Condition of Eq. (1) or (1’)

Equation (11), or the solution of Eq. (11) obtained under the conservation
condition of Eq. (16), gives a boundary condition to Eq. (1) or (1').
However, this type of boundary condition is that which can be attained by
gradually changing the structure of the experimental equipment (in this
instance the structure means the slope g of the molarity gradient), and it
cannot be applied for the purpose of solving Eq. (1) or (1'). For this purpose
it is necessary to give the initial boundary condition occurring at time zero. In
this instant, m = m;, at the top of the column. It will be understood, however,
that the chromatogram becomes independent of the type of initial boundary
condition if g approaches zero. In this extreme case the chromatogram as a
Junction of m always becomes a sharp peak appearing at m = m;, (although
it appears over a large volume of the solvent). This situation is related to the
fact that the mathematical form of the initial boundary condition (obtained
when a band with an infinitesimal width is initially formed at the top of the
column) resembles in part the form of the boundary condition obtained when
g approaches zero (see below).

Thus let us consider the case when a band of the molecules (with the
components 1, 2, ..., p) is initially formed within an infinitesimal width 6L
at the top of the column (cf. Remark 1 below). Ini.a.f. the initial distribution
of the molecules is concentrated within an infinitesimal range [0, 8s] where 8s
is defined as

8s = g 6L (13)
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Since at the top (L = 0) of the column (where the relationship s =0 is
fulfilled; see Eq. 2), the inflow of molecules does not occur after the sample
load has been finished, then Egs. (9), (11), and (16) hold. The solution of Eq.
(11) obtained under the condition of Eq. (16) appears to constitute (part of)
the initial boundary condition of Eq. (1) or (1'). In this instance, however,
Eq. (15) is absent, and the procedure of directly solving Eq. (11) (in which
the infinitesimal parameter Js is involved) should be avoided. Instead of this
procedure, let us create a hypothesis to connect an actual column to the top of
the ideal column in which longitudinal diffusion does not occur. We assume
that the actual column has a critical length AL (cf. Remark 2 below), and that
the sample load is done within AL. We denote by L = 0 the top of the total
compound column (identical with the top of the actual column) and by
L = AL the boundary between the actual and the ideal column. Instead of
the initial boundary condition we consider the boundary condition of Eq. (1)
or (1) to occur at position L = AL of the compound column., We finally
gradually deform the actual part of the compound column to the ideal
structure of no longitudinal diffusion. By this procedure the AL value tends to
infinitesimal (cf. Remark 2 below), and the total column becomes identical
with the original ideal part.
Defining As as

As =g AL (19)
the boundary condition occurring at the boundary between the actual and the

ideal part of the compound column can be represented in such a way that
when both L = AL (i.e., s = As) and m > m;, (i.e., 1y > 0; see Eq. 5), then

dXe)
- = C(y =1,2,..., 20
d(m/As) (o) (o p) (20)

and that when both m = m;, (i.e., 7y, = 0) and L > AL (i.e., s > As), then
Xy =0 (p'=1,2,...,p) (21)

Expecially for Eq. (1'), Eq. (20) can be rewritten as

dxe) 1 : ’
- S =——HXxe) (P =1.2.....p) (20
drip) As

For Eq. (20) or (20') a conservation condition
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oo m 1 .
Jem (G5 ) =mar L oo = e

is fulfilled. In parallel with the fact that Eq, (8) can be derived from Eq. (16)
(Section A), Eq. (8) can also be derived from Eq. (22).

Remark (1). Actually the width in the initial molecular band at the column
top cannot be infinitesimal except the case of an infinitesimal sample load.
However, it is common practice with gradient chromatography that mole-
cules are eluted out of the column over a considerably large volume of the
solution (see Introduction Section in Ref. 7). Therefore, assumption of the
infinitesimal initial band is a good approximation for the final result of the
calculation of the chromatogram. Moreover, with repulsive molecular inter-
actions the width in the final chromatogram still increases.

Remark (2). The critical length AL can be defined as

4D
AL = — (N
1vo |

where D (with dimensions of length?/time) is the diffusion coefficient for
thermal Brownian diffusion plus diffusion due to the second type of flow
heterogeneity (briefly, B-dif plus STFH-dif; see Refs. 5, 6, and 10), and
|vg| (with a dimension of length/time) is the mean flow rate of the solvent in
the column. Due to its mechanism, it can, in general, be assumed that, within
the width AL at the column top, the first type of flow heterogeneity is
negligible, and only the B-dif plus STFH-dif is important (5, 6, 10). In the
ideal state of no longitudinal diffusion, D tends to zero, so that AL tends to
zero (see Eq. f).

(C) The Case of No Molecular Interactions with Small Sample
Loads
In this instance H(x) becomes
H(x) =1 (23)
(see Remark 3 in Section A), and Egs, (1), (20'), and (22) reduce to

OX(y OX (o
Xp) + X)) -0 (24)
ds ar(p')
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dx(p’) 1
— AWR) , 25
dr As K@ (23)
and
1 f d * (26)
’ PR ’
As o X @Fpy = X))

respectively; Eqs. (24)—(26) hold independently of the coexistence of all the
other components than the component p’ in the mixture. Under Eq. (26), Eq.
(25) has a solution fulfilling

ey XY
= In
As X(p)

(27)

On the other hand, the general solution of Eq. (24) can be written as
Xy = @1y = 8) (28)

and, under the boundary condition given by both Eq. (27) (originally derived
from Eq. 20) and Eq. (21), Eq. (28) has a form represented as

rpy — 8+ As xr
= = In X&) (for r,y = 5 — As)
As X
(29)
and
X =0 (for rpy < s — As)
By substituting Eq. (29) into Eq. (7):
_ _ OXw 1 dryy,
Jur(m) = = =2 == Ao X dn’; (for r(y) = 5 — As)
and (30)
— X .
Joorys(m) = — om 0 (for i,y <5 — As)

are obtained. It should be noted (a) that x(,, fulfills Eq. (26) while fy),
fulfilling Eq. (8), and (b) that, when 7,1y = 5 — As, then x(,is a continuous
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function of 7, that increases monotonically with a decrese of r,). (This can
be confirmed directly from the first equality in Eq. 29. However, the same
conclusion can also be derived from the form of Eq. 25. Cf. the correspond-
ing argument for Eq. 42.) This means that, when As—+0, Eq. (30) reduces
to

dr(p')
dm

Joors(m) = Xty 8(rgpy = 5) (31)

(D) The General Case of Molecular Interactions

Step 1. Corresponding to Eqs. (24), (25), and (26), we have Egs. (1),
(20'), and (22). If an equation for component p”’ in the simultaneous
equations, Eq. (20'), is divided by another for component p’, then

dIn X' — de)
dIn Xp) 90

(32)

is obtained where Eq. (6) has been used. Taking into account the fact that
when 1, = 1,7, = 0, then x,, = x¥ and x, = xy. Eq. (32) can be inte-
grated to give

N T

. X(o)) q(p")y9(p")

Xie'y = X'y [ . (33)
X{p"

By substituting Eq. (33) into Eq. (3):

P X qip"Vacp'")
X= 2 x4 [——— (34)

_. %,
oot (p)

is derived, which is the expression of x as a function of the molecular
density, X, of only one component p’ of the mixture. Due to Eq. (34) it is
possible to write

HX) Xy = Yo (X)) (35)
and Eqgs. (17), (20"), and (22) can be rewritten as

Y (X)) + OX (o)
Os 07y

=0 (36)
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dxe) L
- = Y., , 37
dr(p’) As * )(X(p )) ( )

and
1 ° — ¥
—&s—ﬁ Yor(Xe») dreny = X&) (38)

respectively; Egs. (36)—(38) hold independently of the coexistence of all the
other components than component p’ in the mixture.

Step 2. Under Eq. (38), Eq. (37) has a solution fulfilling

*

X(p")

e [ v (39)
As X(p") Yo (Xeoh) ’
On the other hand, the general solution of Eq. (36) can be written as
-1
aY (X))
X ’72(1’{’( S [ s (40)
g g dX')

Under the boundary condition given by both Eq. (39) (originally derived
from Eq. 20) and Eq. (21), Eq. (40) has a form represented as

dY(Xe) 7 \
Fo'y — [ dp ’p s+ As ' 1
X" _
As xe)  Yipn(Xo)
dY,, 17! > (41
<for Ty = l:—(p—)—] s-*As) > (41)
dXp')
and
XpH) =0 (for Pty < [ﬂp)—] —ls - As> )
dXo"

from which
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As
9Xs')
o om
LTINS [de’)(Xm’)) ]_2 @Y (X)) X))
dm axp Xy’ om
dyY, . 1! 42
(for Flo'y = l:dx:p')) ] 5 = As) (42
p
and
Y . . ay,. !
T o (g < [n ] )
As dX)

/

are derived; the second equality in Eq. (42) holds because when x;,, tends to
zero, then Y () tends to X, i.e., to zero (cf. Egs. a, 34, and 35). It
should be noted (a) that ¥,/(x,) fulfills Eq. (38), and (b) that, when r;y =
|dY,,/dx»]'s — As, then Y, increases both continuously and mono-
tonically with a decrease of 7. [This conclusion can be derived from both
the form of Eq. (37) and the fact that Y|, increases not only continuously but
also monotonically with an increase of x, (cf. Egs. a, 34, and 35).] This
means that, when As—+0, Eq. (42) reduces to two equations:

— _ X
.ﬁ/),).s(’n) = a’;;
2 —
_ b [de(X(p’)) ] [dZY(pb(X(p')) ] ' dry) (43)
s dXip) dX)’ dm
and
d¥ o (xor) 17
i) = [w———(;;f’:‘“)] s (44)
o

where Eq. (43) has been derived by equating to zero the denominator on the
right-hand side of the first equality in Eq. (42). The argument above can be
justified by the fact that, if Eq. (44) is partially differentiated with respect to
m, Eq. (43) is spontancously generated. Since ) is a function of m (Eq. §5),
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both Eqs. (43) and (44) define f,, ; as a function of m by using x(,, as an
intermediate parameter.

The set of Eqs. (43) and (44) corresponds to Eq. (31). In fact, Eq. (31)
symbolically shows that, in the absence of molecular interactions, a sharp
chromatogram, f, ;, is obtained at molarity m of competing ions fulfilling the
relationship

rpy(m) =s (45)

On the other hand, in the presence of molecular interactions, a chromatogram

Jions with a finite width (Eq. 43) appears over m values fulfilling Eq. (44)
instead of Eq. (45). When Y, tends to O or when the molecular interactions
are reduced, then Y, dY,,/dx,,), and &*Y,,/dx,* tend to X, 1, and O,
respectively, and Eq. (44) coincides with Eq. (45). At the same time, the
value of f,), in Eq. (43) approaches infinity, fulfilling Eq. (38) or (8). This
means that the set of Egs. (43) and (44) converges to Eq. (31) at the limit of
no molecular interactions.

DISCUSSION

(A) Other Methods for the Calculation of Chromatograms;
The Case of No Molecular Interactions

Equation (28) can be rewritten as
ey = = @ (X)) (28")

We are considering the case when a band of molecules with an infinitesimal
width is formed initially (i.e., when m = m,, or 1,7, = 0) at the top (L =0 or
s = 0) of the column. It is important to note that this initial condition is
characterized by the fact that it is fulfilled independently of the initial value,
X&), of X In order for this situation to occur, it is necessary that

®7l(X(p’)) = O (46)

By substituting Eq. (46) into Eq. (28'), Eq. (45) is obtained.

Equation (45), which has been derived by using this method, can be
considered to represent a situation that the probability for x,,, to have a value
different from zero when r, takes a value between r, and 7, + dr,,
(provided s is given) is &(r,, — s) dr, [to be precise
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r(p')+dr(p')
i 8(rey = 8) dr,

(e

since d is the delta function| This means that the probability for x,, to have a
value different from zero when m takes a value between m and m + dm
should be 8(r,y — s)(dr,,,,/dm) dm. This situation can now be interpreted to
represent the actual state where molecules exist in the interstial liquid in the
column in which the molarity of competing ions is between m and m + dm,
since m has a physical meaning of the ion molarity in the interstitial liquid.
Therefore, if we consider s that corresponds to the bottom, L, of the column
(see Eq. 2), then &(r,,, — s)(dr,,,/dm) dm should represent the probability
that the molecules of component p’ be eluted between the ion molarity m and
m + dm out of the column, The chromatogram f;, should, therefore, be
represented by Eq. (31).

(B) The General Case of Molecular Interactions

Equation (40) can be rewritten as

Y, (X)) ] o -
Py — s =@ (Xe) (40"
(0) [ dX(p') 4
The argument made for the case of no molecular interactions can be extended
to the case of molecular interactions, and Eq. (46) can be considered to be
fulfilled. By substituting Eq. (46) into Eq. (40"), Eq. (44) is derived, and by
partially differentiating Eq. (44) with respect to m, Eq. (43) is obtained.

{C) Relationships with Earlier Methods
The method used in Section (A) for the case of no molecular interactions

was applied in Appendix II of Ref. I with a modifization. Thus, instead of
Egs. (46) and (28'), the initial boundary condition

Xm0 = 8(5) (47)

(cf. Eq. A21 in Ref. I, Appendix II) and Eq. (28) were considered,
respectively. Under the condition of Eq. (47), Eq. (28) has a form repre-
sented as
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X'y = 0(ryy = 5) (48)

(cf. Eq. A22 in Ref. I, Appendix II), which corresponds to Eq. (45). It
should be emphasized that Eq. (48) shows only symbolically the fact that the
X,») value is different from zero only within an infinitesimal molarity range
around molarity m fulfilling Eq. (45). This means that the chromatogram,
Jio)s» cannot be derived by directly applying Eq. (48) to Eq. (7). Instead of
this procedure it is necessary to introduce an interpretation given in the last
half of Section (A); as a result the chromatogram (Eq. 31) can be derived
(see Section A).

A method similar to that used in Section (B) for the case of molecular
interactions was applied in Ref. 7. In Ref. 7, however, Eq. (44) (i.e., Eq. 33
in Ref. 7) was derived in relationship with the fact that s tends to zero when g
tends to zero (cf. Eq. 2) instead of the fact that s tends to zero when L tends
to zero. As argued in Theoretical Section (B), Eq. (44) should be derived on
the basis of the fact that s tends to zero when L tends to zero.

Both Eq. (39) (originally derived from Eq. 20) and Eq. (21) constitute a
boundary condition to Eq. (36) with a general solution given by Eq. (40). It
should be noted, however, that the form (Eq. 46) of the function @ in Eq.
(40) cannot be derived by directly applying the limit of Eq. {39), i.e.,

Fio") X*(p") 1
lim As = -y dX(p" (49)
hm o) Yi(Xe)

to Eq. (40). This is due to the fact that, at the limit of s— 40, Eq. (44) (which
has been derived by applying Eq. 46 to Eq. 40’; see Section B) does not
coincide with Eq. (40); viz., the factor [dY,)/dx,]' involved in Eq. (44) is

different from the factor
X* (") .
f, Yoy X
X(p")

involved in Eq. (49). The contradiction has occurred because the limit of
As—+0 (Eq. 49) was a priori considered without any reasoning (cf. the
argument in Theoretical Section B related to Eq. 15). A sophistical
argument for this problem was made in Appendix I of Ref. 7.

In the Theoretical Section it has been shown that the chromatograms that
were obtained in both Ref. I, Appendix II, and Ref. 7 by using different
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methods can be calculated on the basis of the general principle of Eq. (7),
independently of the occurrence of the mutual molecular interactions.
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